

Impacts of Ammonia-Aerosol-Climate Feedbacks on Food Security and Air Quality

Ka Ming Fung 馮家銘 (MIT; kamingfung@mit.edu) Amos Tai (The Chinese University of Hong Kong) Maria Val Martin (University of Sheffield)

CESM LMWG Meeting, March 4th, 2020

Agricultural NH₃ is equally harmful as reactive N from factories and vehicles

Health Damage Costs of Reactive N across China in 2008

The current N cycle in CESM2 and the missing bidirectional exchange of NH₃ & NH₄⁺

We implement into CLM the "multi-step" NH₃ volatilization scheme from DNDC (Li *et al.*, 2012)

Aqueous NH₄⁺ adsorbing on negative soil surface:

$$f_{\text{adsorption}} = 0.99(7.27f_{\text{clay}}^3 - 11.22f_{\text{clay}}^2 + 5.72f_{\text{clay}} + 0.03)$$

clay fraction

Dissociation of free-flowing NH_4^+ : $NH_4^+(non-ads) \rightleftharpoons NH_3(aq) + H^+(aq)$ soil temperature (°C) sociation $f_{\text{dissocation}} = \frac{K_{\text{w}}}{[\text{H}^+]K_{\text{a}}}$ $K_{\text{a}} = (1.4 + (0.01)T_{\text{soil}}) \times 10^{-5} \text{ (mol. L}^{-1})$ $K_{\text{w}} = 10^{0.09 + (0.04)T_{\text{soil}}} \times 10^{-15} \text{ (mol.}^2 \text{ L}^{-2})$ $[H^+] = 10^{-pH} (mol. L^{-1})$ pH = 6.8 rate constant more about this of hydrolysis assumption later Fraction of NH_{3 (aq)} to vaporize: soil layer depth (m) $f_{\text{vaporization}} = \left(\frac{1.5s}{1+s}\right) \left(\frac{T_{\text{soil}}}{50+T_{\text{soil}}}\right) \left(\frac{l_{\text{max}}-l}{l_{\text{max}}}\right)$ wind speed (m s⁻¹)

Our cropland NH₃ emission agrees reasonably well with inventories around hotspots

Colormaps are saturated at respective values.

Atmospheric NH₃ is less biased comparing to observations than default CESM2

Colormaps are saturated at respective values.

Experiment 1: Feedbacks between NH₃, aerosol, and climate

Cropland NH₃ emission raised by N deposition, but suppressed by aerosol-climate interactions

Colormaps are saturated at respective values.

Experiment 2: Impacts of the feedbacks on crop production

Diverging effects on grain production: ups in Asia, downs in the US and Europe

(Global Total = +47 Mt-C year⁻¹ / +3.5 %)

Uncertainty: NH_3 emission is highly sensitive to soil pH

С

Uncertainty: Canopy capture process of emitted NH₃

On-going: modeling sustainable farming alternatives, such as intercropping (already implemented into CLM4.5)

Fung et al. (in prep.)

1. Assuming surface area of a crop's root is proportional to its mass, a crop's competition factor (CF) is then defined as:

 $CF_{crop} = \frac{\text{total root surface area a crop}}{\text{total root surface area of both crops}}$

 $\approx \frac{\text{mass}_{\text{root,crop}} \cdot \text{weighting}_{\text{crop}}}{\sum_{\text{system}} \text{mass}_{\text{root,crop}} \cdot \text{weighting}_{\text{crop}}}$

2. The amount of soil N a crop can take up is co-limited by its demand and accessible soil N:

N_{uptake,crop}

 $= \min\left(N_{\text{demand,crop}}, CF_{\text{crop}} \cdot \sum_{\text{system}} N_{\text{deployed,crop}}\right)$

Thank you!

Please visit <u>https://kamingfung.wordpress.com</u> for more. Special thanks to the NCAR LMWG Travel Support, and other supports from Colette Heald's Group

- Coupled NH₃ emission and NH₄⁺ deposition between CLM5 and CAM-chem6
 - Cropland NH₃ emission agrees well with CMIP6 inventory
 - Modeled atmospheric NH₃ is less biased than the default simulation when comparing with IASI NH₃ observations
- Feedbacks of N deposition and aerosol-climate interaction
 - NH₃ emission raised by N deposition (+22%) but suppressed by aerosol-climate interactions (-3%)
 - Grain production is lower in North America & Europe (–5%) likely due to dryer & warmer regional climate, but higher in Asia and Africa primarily because of N enrichment by deposition (+10%)
- Next steps:

Summary

- Dynamic soil pH
- Finetuning the canopy capture scheme
- Investigate whether NH₃-aerosol-climate feedbacks would hinder sustainable farming under future scenarios and climate conditions