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A large portion of atmospheric reactive N is 
emitted by terrestrial activities

Gu et al. (2012)

1. Agriculture is a main NH3 emitter

3. Anthropogenic >>> Natural

Health Damage Costs of Reactive N across China in 2008
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2. Agriculture > Industry + Traffic

4. Terrestrial >>> Marine



Farms (Local)

In Europe, China, and the US, 80-90% of 
atmospheric NH3 is from agriculture
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Can we secure future food supply without sacrificing the clean air?



They are placed close enough to allow belowground competition

Intercropping, a traditional wisdom, could be a 
way-out to this food-environment dilemma

Maize
 (since March)

Soybean
(since May)

Two or more crops are grown in alternate 
strips with a time-delay

N stress under such 
competition stimulates 
soybean to fix more 
atmospheric N

Nitrogen 
fixing 
nodules



Modeling intercropping to explore the 
feasibility of a nationwide adoption
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We add a new scheme to parameterize 
belowground nutrient competition
among intercropped crops



We validate the modified DNDC and simulate a 
“whole-China” conversion to intercropping

Fung et al. (2019)

intercropped maize

monoculture maize

intercropped soybean

monoculture soybean

1. 33% less fertilizer to 

generate the same 

quantity of maize

2. On the same land, 

additional soybean 

can be harvested

42% less fertilizer is needed to maintain maize 
yield if intercropping is adopted in all maize or 

soybean croplands

(DNDC-simulated)

Gansu, Tibet and 
Qinghai are 
excluded due to 
data insufficiency



The corresponding NH3 emission can be 
reduced by 45%

GEOS-Chem
3-D Global Chemical Transport Model

Gansu, Tibet and 
Qinghai are excluded

Relative NH3 Emission
(Intercropping vs. Monoculture)

Grid-by-grid 
scaling

Fung et al. (2019)

MASAGE NH3 
Emission Inventory

(Magnitude And Seasonality of 
Agricultural Emissions)



GEOS-Chem predicts air quality improvement if 
all croplands are using intercropping

SO4
2– 

greatest change = –0.081 µg m–3 (–1.2%)
Inorganic PM2.5 

greatest change = –1.5 µg m–3  (–2.3%)

NH4
+

 greatest change = –0.35 µg m–3 (–3.9%)
NO3

– 

greatest change = –1.2 µg m–3 (–5.0%)

(% to local mean without intercropping)
Fung et al. (2019)



Intercropping could be more economic than 
the current practice in China

Item US$ 
Per Unit

Maize 0.25/kg

Soybean 0.41/kg

Urea 0.27/kg

Statistical Life 160k

Labor 186.50/ha

Machinery 40.00/haFung et al. (2019)

More Grain = +US$58b

+

Reduced Fertilizer = +US$0.5b

+

Avoided Health Costs = 
+US$13b

+

Additional Machinery & Labor = 
–US$6.0b

=

Net profit = +US$67b
(+93% relative to the current practice)



Potential feedbacks complicate the land-
atmospheric NH3/NH4

+ cycle, which may offset 
the benefits of intercropping

Fung et al. (in prep.)
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Land (CLM)
River 
(RTM)

Atmosphere (CAM-chem)

Community Earth System Model (CESM) 
and its N-cycle
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We implement into CLM the “multi-step” NH3 

emission scheme from DNDC (Li et al., 2012)

Campbell et al. (2008)

Fraction of NH4
+ adsorbed to soil matrix is 

determined by an empirical equation:

𝑓ads = 0.99(7.2733𝑓clay
3 − 11.22𝑓clay

2 + 5.7198𝑓clay + 0.0263)

clay fraction

Fraction of dissociated non-adsorbed NH4
+:

NH4
+

(non-ads) + OH–
(aq) ⇌ NH3 (aq) + H2O(l)

𝑓dis =
𝐾w

H+ 𝐾a

𝐾a = (1.416 + (0.01357)𝑇soil) × 10−5 (mol L−1)

𝐾w = 100.08946+(0.03605)𝑇soil × 10−15 mol2 L−2

H+ = 10−pH (mol L−1)
pH = 6.8

soil temperature (oC)

rate constant 
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𝑓vol =
1.5𝑠
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We further propose to calculate a 
prognostic canopy capture fraction

Relative 
humidity 

within 
canopy

d NH3 g

d𝑡
thru. canopy

=
d NH3 g

d𝑡
from soil

1 − 𝑓cap

d NH3 g

d𝑡
from soil

d NH3 g

d𝑡
thru. canopy

𝑓cap = 14(ℎtop−ℎbot) ×

    TLAI ×
1

𝑣fric
 ×

RHcanopy × 𝑣NH3

Derived from DNDC (Li et al., 2012) and CMAQ 
(Pleim et al., 2013), fraction of NH3 captured by 
canopy is estimated as:

frictional velocity 
(m s–1)

Deposition 
velocity of 

NH3 on leaf 
(0.05 m s – 1 

here) 

Snow-free 
one-sided 
leaf area 

index (LAI)

Fung et al. (in prep.)

Account for effect of canopy height

*Literature suggests that 
the captured NH3 can be 
1) metabolized
2) retained on leaves
3) returned to the soil



Changes in cropland NH3 emission driven by
N deposition & aerosol-climate interactions

Please note that the colormaps are saturated at respective values.

∆(aerosol-climate interactions)

(Global Total = +0.1 Tg-N year–1)

∆(deposition)

(Global Total = +1.7 Tg-N year–1)

Baseline

(Global Total = 15.2 Tg-N year–1)

∆(deposition + aerosol-climate interactions) = Fully coupled

(Global Total = +1.3 Tg-N year–1)

Fung et al. (in prep.)



Impacts of the feedbacks on total food 
production

Please note that the colormaps are saturated at respective values.

∆(aerosol-climate interactions)

(Global Total = –68 Tg-C year–1 or –5.0%)

∆(deposition)

(Global Total = +5.3 Tg-C year–1 or +0.4%)

Baseline

(Global Total = 1,350 Tg-C year–1)

∆(deposition + aerosol-climate interactions) = Fully coupled

(Global Total = –28 Tg-C year–1 or –2.2%)

Fung et al. (in prep.)



Conclusions & Implications

• Large-scale Intercropping in China [Fung et al. 2019]

➢ Land-use Efficiency: 200% relative yield, maize and soybean combined, 

on the same size of cropland and over a single planting season

➢ Nitrogen-use Efficiency: Less fertilizer use (–42%)

➢ Environmental Sustainability: Reduced NH3 emissions (–45%) and 

PM2.5 concentration (up to –2.3%)

➢ Profitability: US$67B net economic benefits including US$13B from 

avoided health costs

• Fully coupled land-atmospheric NH3/NH4
+ modeling with CESM2.0

➢ Quantifying impacts of N deposition and aerosol-climate 

interactions on NH3 emission and food production

• Science-based evidence to aid policymakers in formulating 

sustainable agricultural plans that safeguard food security, air 

quality, and environmental health

Thank you!
For more, please visit 

kamingfung.wordpress.com


