Modeling and Assessing the Impacts of Sustainable Farming Practices on Food Security, Air Quality, and Public Health

Ka Ming FUNG (kamingfung@link.cuhk.edu.hk)

Graduate Division of Earth and Atmospheric Sciences Faculty of Science The Chinese University of Hong Kong

Co-authors: Amos TAI (CUHK) Hon-ming LAM (CUHK) Maria VAL MARTIN (University of Sheffield)

CCMI Science Workshop, 9th Aug 2019

In Europe, China, and the US, 80-90% of atmospheric NH₃ is from agriculture

Can we secure future food supply without sacrificing the clean air?

Intercropping, a traditional wisdom, could be a way-out to this food-environment dilemma

Two or more crops are grown in alternate strips with a time-delay

Nitrogen fixing nodules

They are placed close enough to allow belowground competition

N stress under such competition stimulates soybean to fix more atmospheric N

Modeling intercropping to explore the feasibility of a nationwide adoption

We validate the modified DNDC and simulate a "whole-China" conversion to intercropping

25

50

75

100

Fung *et al.* (2019)

The corresponding $NH₃$ emission can be reduced by 45%

Relative $NH₃$ Emission (Intercropping vs. Monoculture)

$MASAGE NH₃$ Emission Inventory

3-D Global Chemical Transport Model

GEOS-Chem predicts air quality improvement if all croplands are using intercropping

(% to local mean without intercropping)

Intercropping could be more economic than the current practice in China Avoided Health Costs =

Reduced Fertilizer = +US\$0.5b

+US\$13b

Additional Machinery & Labor = –US\$6.0b

=

(+93% relative to the current practice)

Net profit = +US\$67b

Potential feedbacks complicate the landatmospheric NH₃/NH₄⁺ cycle, which may offset the benefits of intercropping

Community Earth System Model (CESM) and its N-cycle

Fung *et al.* (in prep.)

We implement into CLM the "multi-step" $NH₃$ emission scheme from DNDC (Li *et al.*, 2012) $d[NH_3(g$ 1 $\approx \left[\text{NH}_4^+\right]_{\text{(soil)}}\right] (1 - f_{\text{ads}}) f_{\text{dis}} f_{\text{vol}}$ $\mathrm{d}t$ Δt from soil $NH_{3 (g)}$ $NH₃$ (aq) NH_4^+ $\overline{}$ (soil) $\overline{}$ NH₄⁺ Fraction of dissociated non-adsorbed NH_4 ⁺: $NH_4^+_{(non-ads)} + OH^-_{(aq)} \rightleftharpoons NH_{3(aq)} + H_2O_{(1)}$ Campbell *et al.* (2008) rate constant of Soil particle surrounded by dissociation $K_{\mathbf{w}}$ film of water Soil particle f_{dis} = Root hair H^+ K_a soil temperature (°C) available $K_{\rm a} = (1.416 + (0.01357)T_{\rm soil}) \times 10^{-5}$ (mol L⁻¹) to plant $K_{\rm w}=10^{0.08946+(0.03605)T_{\rm soil}}\times 10^{-15}$ (mol² L⁻² $H_2O + CO_2 \longrightarrow H_2CO_3 \longrightarrow HCO_3^- +$ $[H^+] = 10^{-pH}$ (mol L^{-1}) **Root hair** $pH = 6.8$ rate constant Air space of hydrolysis Fraction of NH_4^+ adsorbed to soil matrix is soil layer Fraction of volatilized NH_{3 (aq)}: determined by an empirical equation: depth (m) 1.5 $T_{\rm soil}$ $l_{\text{max}} - l$ $f_{\text{ads}} = 0.99(7.2733 f_{\text{clay}}^3 - 11.22 f_{\text{clay}}^2 + 5.7198 f_{\text{clay}} + 0.0263)$ $f_{\text{vol}} =$ $1 + s$ $50 + T_{\text{soil}}$ $l_{\rm max}$ clay fraction wind speed (m s⁻¹

We further propose to calculate a prognostic canopy capture fraction

$$
\left(\frac{d\left[\text{NH}_{3(g)}\right]}{dt}\right)_{\text{thru. canopy}} = \left(\frac{d\left[\text{NH}_{3(g)}\right]}{dt}\right)_{\text{from soil}} \left(1 - f_{\text{cap}}\right)
$$

Derived from DNDC (Li *et al.*, 2012) and CMAQ

Changes in cropland $NH₃$ emission driven by N deposition & aerosol-climate interactions

Please note that the colormaps are saturated at respective values.

Fung *et al.* (in prep.)

Impacts of the feedbacks on total food production

Please note that the colormaps are saturated at respective values.

Fung *et al.* (in prep.)

Conclusions & Implications

Thank you!

For more, please visit kamingfung.wordpress.com

- Large-scale Intercropping in China [Fung *et al.* 2019]
	- ➢ **Land-use Efficiency:** 200% relative yield, maize and soybean combined, on the same size of cropland and over a single planting season
	- ➢ **Nitrogen-use Efficiency:** Less fertilizer use (–42%)
	- ➢ **Environmental Sustainability:** Reduced NH³ emissions (–45%) and $PM_{2.5}$ concentration (up to -2.3%)
	- ➢ **Profitability:** US\$67B net economic benefits including US\$13B from avoided health costs
- Fully coupled land-atmospheric NH₃/NH₄⁺ modeling with CESM2.0
	- ➢ **Quantifying impacts of N deposition and aerosol-climate interactions** on NH₃ emission and food production
- Science-based evidence to **aid policymakers in formulating sustainable agricultural plans** that safeguard food security, air quality, and environmental health