Modeling and Assessing the Impacts of Sustainable Farming Practices on Food Security, Air Quality, and Public Health

Ka Ming FUNG (kamingfung@link.cuhk.edu.hk)

Graduate Division of Earth and Atmospheric Sciences Faculty of Science The Chinese University of Hong Kong

Co-authors: Amos TAI (CUHK) Hon-ming LAM (CUHK) Maria VAL MARTIN (University of Sheffield)

CCMI Science Workshop, 9th Aug 2019

In Europe, China, and the US, 80-90% of atmospheric NH₃ is from agriculture

Can we secure future food supply without sacrificing the clean air?

Intercropping, a traditional wisdom, could be a way-out to this food-environment dilemma

Two or more crops are grown in alternate strips with a time-delay

Nitrogen fixing nodules

They are placed close enough to allow belowground competition

N stress under such competition stimulates soybean to fix more atmospheric N Modeling intercropping to explore the feasibility of a nationwide adoption

We validate the modified DNDC and simulate a "whole-China" conversion to intercropping

25

50

75

100

Fung et al. (2019)

The corresponding NH₃ emission can be reduced by 45%

Relative NH₃ Emission (Intercropping vs. Monoculture)

MASAGE NH₃ Emission Inventory

3-D Global Chemical Transport Model

GEOS-Chem predicts air quality improvement if all croplands are using intercropping

(% to local mean without intercropping)

Intercropping could be more economic than the current practice in China

Reduced Fertilizer = +US\$0.5b

45N 35N 25N 80E 100E 120E US\$ million -30

Avoided Health Costs = +US\$13b

Additional Machinery & Labor = -US\$6.0b

Fung et al. (2019)

(+93% relative to the current practice)

+

<u>ltem</u>	<u>US\$</u> <u>Per Unit</u>
Maize	0.25/kg
Soybean	0.41/kg
Urea	0.27/kg
Statistical Life	160k
Labor	186.50/ha
Machinery	40.00/ha

Potential feedbacks complicate the landatmospheric NH₃/NH₄⁺ cycle, which may offset the benefits of intercropping

Community Earth System Model (CESM) and its N-cycle

Fung *et al.* (in prep.)

We implement into CLM the "multi-step" NH_3 emission scheme from DNDC (Li et al., 2012) $\left(\frac{d\left[\mathrm{NH}_{3\,(\mathrm{g})}\right]}{\mathrm{d}t}\right)_{\mathrm{from\,soil}} \approx \left[\mathrm{NH}_{4\,(\mathrm{soil})}^{+}\right](1 - f_{\mathrm{ads}})f_{\mathrm{dis}}f_{\mathrm{vol}}\left(\frac{1}{\Delta t}\right)$ NH_{3 (g)} NH_{3 (aq)} NH_4^+ (soil) $NH_4^{+}_{(aq)}$ Fraction of dissociated non-adsorbed NH₄⁺: NH_4^+ (non-ads) + $OH^ \Rightarrow NH_3^-$ (aq) + $H_2O_{(I)}$ Campbell et al. (2008) rate constant of Soil particle surrounded by dissociation film of water $f_{\rm dis} = \frac{K_{\rm w}}{[{\rm H}^+]K_2}$ soil temperature (°C) Soil particle Root hair $K_{\rm a} = (1.416 + (0.01357)T_{\rm soil}) \times 10^{-5} \,(\text{mol } \text{L}^{-1})$ available to plant $K_{\rm w} = 10^{0.08946 + (0.03605)T_{\rm soil}} \times 10^{-15} \,({\rm mol}^2 \,{\rm L}^{-2})$ $H_2O + CO_2 \longrightarrow H_2CO_3 \longrightarrow HCO_3^- +$ $[H^+] = 10^{-pH} \pmod{L^{-1}}$ Root hair pH = 6.8rate constant Air space of hydrolysis Fraction of NH_4^+ adsorbed to soil matrix is Fraction of volatilized NH_{3 (aq)}: soil laver determined by an empirical equation: depth (m) $f_{\rm vol} = \left(\frac{1.5s}{1+s}\right) \left(\frac{T_{\rm soil}}{50+T_{\rm soil}}\right) \left(\frac{l_{\rm max}-l}{l_{\rm max}}\right)$ $f_{\rm ads} = 0.99(7.2733f_{\rm clay}^3 - 11.22f_{\rm clay}^2 + 5.7198f_{\rm clay} + 0.0263)$ clay fraction wind speed (m s⁻¹

We further propose to calculate a prognostic canopy capture fraction

$$\left(\frac{d\left[\mathrm{NH}_{3\,(\mathrm{g})}\right]}{\mathrm{d}t}\right)_{\mathrm{thru.\,canopy}} = \left(\frac{d\left[\mathrm{NH}_{3\,(\mathrm{g})}\right]}{\mathrm{d}t}\right)_{\mathrm{from\,soil}} \left(1 - f_{\mathrm{cap}}\right)$$

Derived from DNDC (Li et al., 2012) and CMAQ

Changes in cropland NH₃ emission driven by N deposition & aerosol-climate interactions

Please note that the colormaps are saturated at respective values.

Fung et al. (in prep.)

Impacts of the feedbacks on total food production

Please note that the colormaps are saturated at respective values.

Fung et al. (in prep.)

Conclusions & Implications

Thank you!

For more, please visit <u>kamingfung.wordpress.com</u>

- Large-scale Intercropping in China [Fung et al. 2019]
 - Land-use Efficiency: 200% relative yield, maize and soybean combined, on the same size of cropland and over a single planting season
 - Nitrogen-use Efficiency: Less fertilizer use (-42%)
 - Environmental Sustainability: Reduced NH₃ emissions (–45%) and PM_{2.5} concentration (up to –2.3%)
 - Profitability: US\$67B net economic benefits including US\$13B from avoided health costs
- Fully coupled land-atmospheric NH₃/NH₄⁺ modeling with CESM2.0
 - Quantifying impacts of N deposition and aerosol-climate interactions on NH₃ emission and food production
- Science-based evidence to aid policymakers in formulating sustainable agricultural plans that safeguard food security, air quality, and environmental health