

Improving the Terrestrial N Cycle Modeling for A Better Estimation of Agricultural NH₃ Emission Under Sustainable Farming Alternatives

Ka Ming FUNG (kamingfung@link.cuhk.edu.hk)

Graduate Division of Earth and Atmospheric Sciences Faculty of Science The Chinese University of Hong Kong

Co-authors: Amos Tai (CUHK) Maria Val Martin (Sheffield) Eri Saikawa (Emory) Sam Peters (Emory) Alex Avramov (Emory)

Growing food demand poses a bigger threat to the environment and public health

Can we secure future food supply without sacrificing the clean air?

Intercropping requires less fertilizer to produce the same amount of crops

Intercropping allows crop competition and enhance biological nitrogen fixation

Relative Fertilizer Usage by Province

Assuming all maize and soybean croplands are now adopting maize-soybean intercropping, on average, 42% less fertilizer is needed to maintain maize yield in each cropland

Fung et al. (in review)

National adoption of intercropping also helps safeguard air quality Such reduced fertilization cuts national agricultural NH₃ emission by 45%

Relative NH₃ Emissions (Maize-Soybean)

 $\%$

On average, 42% less fertilizer is needed to maintain maize yield on each cropland

Fung et al. (in review)

Intercropping could be more economic than the current practice in China Avoided Health Costs =

Reduced Fertilizer = +US\$0.5b

+US\$13b

Additional Machinery & Labor = –US\$6.0b

=

(+93% relative to the current practice)

Net profit = +US\$67b

We will use CESM to evaluate the potential benefits of intercropping under future climate and socioeconomic scenarios

N-cycle in CESM and the missing pathways

We implement into CLM the "multi-stage" $NH₃$ volatilization scheme from DNDC (Li et al., 2012)

$$
\frac{d\left[\text{NH}_{3}\left(\text{g}\right)\right]}{dt} \approx \left[\text{NH}_{4}^{+}\left(\text{soil}\right)\right](1 - f_{\text{ads}})f_{\text{dis}}f_{\text{vol}}\left(\frac{1}{\Delta t}\right)
$$

Fraction of soil NH_4^+ adsorbed is determined by an empirical equation for adsorption:

$$
f_{\text{ads}} = 0.99(7.2733 f_{\text{clay}}^3 - 11.22 f_{\text{clay}}^2 + 5.7198 f_{\text{clay}} + 0.0263)
$$

Fraction of dissociated non-adsorbed NH_4 ⁺: $NH_4^+_{(non-ads)} \rightleftharpoons NH_3_{(aq)} + H^+_{(aq)}$

 $50 + T_{\text{soil}}$

 $l_{\rm max}$

wind speed (m s-

 $f_{\text{vol}} =$

 $1 + s$

Comparing with a Chinese $NH₃$ emission inventory (Zhang et al, 2018) Fung et al. (in prep.)

Zhang2018 NH $_{\rm 3}$ Emission (fertilizer-induced only)

CLM5 NH₃ Emission (fertilizer-induced only) (3.24) Tg year⁻¹ nationwide)

[CLM5] vs [Zhang2018] F NH3 VOL CROP | β_1 = 0.31 | R² = 0.37 0.25 0.20 [CLM5] (Tg) 0.15 China 0.10 0.05 0.00

[Zhang2018] (Tg)

 0.15

 0.20

 0.25

 0.10

 0.05

 0.00

Monthly $NH₃$ Emission

On-going and Future Work

- Possible reasons for the model-inventory differences:
	- \triangleright Absence of the canopy reduction factor
	- ➢ Inconsistent crop maps
	- \triangleright Mismatch in fertilization application rates
	- \triangleright Deviation in prescribed data: soil pH, deposition
- Now: fine-tuning the new $NH₃$ schemes against field and satellite measurements
- Maria Val Martin is trying to implement:
	- ➢ Flux exchange between CLM and CAMchem, including emission of N_2O , NO_x & NH_3 and deposition of NH_4 ⁺
	- \triangleright Surface dataset of soil pH
- Next: investigating emission scenarios under future climate and their potential feedback mechanisms

Comparing with AMoN site measurement

CLM5 $NH₃$ emitted associated with fertilizer Tg grid⁻¹ year⁻¹ $(3.3$ Tg year⁻¹ nationwide) 0.0747 0.0560 50N 0.0373 45N 0.0187 0.0000 40N 35N μ g m $^{-3}$ $30N • 4$ $\overline{3}$ $\overline{2}$ 25N $-100E$ $-80E$ $-120E$ \bullet 1 $\overline{}$ 0

Figure 2. Yearly averaged surface concentrations (μ g m⁻³, left vertical color bar) from IDAF, AMoN, EMEP and NNDMN data sets plotted on top of the NH₃ IASI satellite column ($\times 10^{16}$ molec cm⁻², right vertical color bar) distribution for 2011 gridded at 0.25° lat \times 0.5° long. Columns and relative error (%, bottom left inset) have been calculated as a weighted mean of all IASI measurements within a cell, following equations described in Van Damme et al. (2014a) (columns with an associated relative above 100 % have been filtered).

Thank you