

Modeling large-scale adoption of intercropping as a sustainable agricultural practice for food security and air pollution mitigation around the globe

Ka Ming FUNG (kamingfung@link.cuhk.edu.hk) Graduate Division of Earth and Atmospheric Sciences The Chinese University of Hong Kong

Acknowledgement:

Amos TAI Taiwen YONG Xiaoming LIU (The Chinese University of Hong Kong) (Sichuan Agricultural University) (Shehong Agricultural Technology Station)

FAO: to feed the fast growing population, we need to double our food supply by 2050

But, is our Earth ready for more agricultural activities?

Cropland Expansion

Intensified Farming

crops and livestock

80% of deforestation worldwide are for agriculture

Over-fertilization makes NH_3 emission an air pollution problem

>90% of NH₃ in Europe & China are agricultural emissions and attributable to downwind PM_{2.5}

Gu et al. (2012)

A way-out to this food-environment dilemma could be intercropping

Soybean

(since May)

(since March)

They are placed close enough to allow belowground competition

Nitrogen fixing nodules

N stress under such competition stimulates soybean to fix more atmospheric N

We examine its beneficial effects by simulating a large-scale intercropping scheme in China

We enable intercropping in DNDC by adding a new N allocation algorithm

soil N is proportional to its root mass, a competition factor is hence defined as: $CF_{\rm crop} = \frac{\text{space occupied by crop}}{\text{space occupied by system}}$ $mass_{root,crop} \cdot f_{uptake,crop}$

$$\approx \frac{1}{\sum_{\text{crop}} \text{mass}_{\text{root,crop}} \cdot f_{\text{uptake,crop}}}$$

$$f_{\text{uptake}} = \frac{N_{\text{uptake}}}{N_{\text{demand}}} = \frac{1}{\frac{N_{\text{demand}}}{N_{\text{uptake}}}} = \frac{1}{\frac{N_{\text{uptake}} + N_{\text{fix}}}{N_{\text{uptake}}}}$$

N Fixation Index defined in DNDC

1

In each iteration, the amount of N a crop could get from a soil layer:

$$N_{\text{uptake,crop}} = \min(N_{\text{accessible,crop}}, N_{\text{demand,crop}})$$
$$= \min(CF_{\text{crop}} \cdot N_{\text{soil}}, N_{\text{demand,crop}})$$

Using data of a field experiment, our simulation shows that

DNDC Simulation of Yong et al. (2014)

1. Less fertilizer (-33%) to maintain maize yield

2. Extra batch of soybean can be harvested

3. NH_3 emission is reduced by 26%

Fung et al. (in prep)

Simulated Yields in China

systems — inter.maize — inter.soybean — mono.maize — mono.soybean

Fung et al. (in prep)

On average, intercropping can maintain the same maize production while cutting down fertilizer required by 42%

Correspondingly, NH₃ emission can be reduced by 45%

GEOS-Chem predicts improvement in air quality after converting farmlands into intercropping

0.4

0.2

0.0

-0.2

-0.4

IH_4^+ greatest change = -0.30 µg m⁻³ (-3.3%

(% to local mean without intercropping)

Costs and benefits of adopting intercropping nationwide Paulot & Jacob (2013)

+

-3000 0

3000

Machinerv

Looking into a bigger picture: a globe intercropping scenario

 Based on Community Land Model (CLM4.5) surface data, we identify croplands cultivating both maize and sovbean

Then, we convert those croplands into maize/soybean

Our preliminary results with revised-CLM show that intercropping raises maize production Fung et al. (in prep) without sacrificing soybean's Only intercropping croplands are shown on the maps

Monoculture Maize (Total = 46 Tg year^{-1})

Monoculture Soybean (Total = 10 Tg year $^{-1}$)

0.33160

0.26520

0.19890

0.13260

0.06631

0.00000

Intercropped Soybean (Total = 10 Tg year^{-1})

Intercropped Maize (Total = 179 Tg year^{-1})

Adding a new scheme in CLM, we can also Fung et al. (in prep) estimate reduction in NH₃

Only intercropping croplands are shown on the maps

100E

0E

Summary & Future work

If all maize or soybean farmlands are adopting intercropping, our preliminary simulation results using

- Increase in maize production without sacrificing soybean yields
- Reduction in NH₃ emission under the same fertilizer input
- Finishing NH₃ volatilization model
- \succ Adding N₂O and NO_x emissions
- > Modeling other sustainable farming practices, e.g. rotation, zero-tillage

Thank you!

Please don't hesitate to send me any question at kamingfung@link.cuhk.edu.hk

Health Damage Costs of China in 2008 (US billion dollars)

Atmospheric NH₃ is mainly from soil and vegetation

Preliminary work of Phase II on a proposed CLM4.5 multi-stage NH₃ volatilization scheme

DNDCv9.5 uses an empirical equation for adsorption of NH_4^+ :

$$f_{\text{adsorption}} = 0.99(7.2733 f_{\text{clay}}^3 - 11.22 f_{\text{clay}}^2 + 5.7198 f_{\text{clay}} + 0.0263)$$

clay fraction

The non-adsorbed $[NH_4^+]$ is given by:

$$\left[NH_{4 \text{ (non-adsorbed)}}^{+}\right] = \left[NH_{4 \text{ (soil)}}^{+}\right]\left(1 - f_{\text{adsoption}}\right)$$

NH_3 volatilization rate relies on free NH_4^+ , dissociation and climate

Volatilization of $[NH_{3(aq)}]$ from a soil layer in one time-step is found by:

soil layer index

$$\left[\mathrm{NH}_{3\,(\mathrm{g})}\right] = \left[\mathrm{NH}_{3\,(\mathrm{aq})}\right] \left(\frac{1.5s}{1+s}\right) \left(\frac{T_{\mathrm{soil}}}{50+T_{\mathrm{soil}}}\right) \left(\frac{q_{\mathrm{max}}-q}{q_{\mathrm{max}}}\right)$$

wind speed (m s⁻¹)

DNDC nitrogen uptake scheme is revised to capture below-ground competitions

Estimation of health costs associated with $PM_{2.5}$ Empirical health impact factor of $PM_{2.5}$, $\beta = 0.0058 m^3 \mu g^{-1}$ (Krewski

• Increase in mortality rate:

$$\Delta M = PM_0 \left(1 - e^{-\beta \Delta C}\right)$$
Provincial population > 30yo
Annual mortality rate

et al)

- Value of statistical life in China from Gu et al. (2012) VSL = US\$ 170,000
- Assuming premature mortality lags PM_{2.5} by 20 years and the risk-free interest rate (e.g. 20-year US government issued bond) is 3%, then the health costs associated with PM_{2.5} is given by:

Continuouslycompounded discount

$$Cost_{PM_{25}} = \Delta M \times VSL \times e^{(-0.03)(20)}$$

Supplementary: Intercropping of Wheat and soybean **Relative NH**₃ Emissions (Wheat-Soybean)

US\$ million

-6000

Over the whole China, inorganic $PM_{2.5}$, NH_4^+ and $NO_3^$ are decreased up to 1.5 μ g m⁻³ (2.1%), 0.36 μ g m⁻³ (4.0%) and $1.1 \ \mu g \ m^{-3} (7.0\%)$, respectively.

40N

50N

276% more than monoculture

-3000

Missing pathways in the nitrogen cycle of CLM4.5CN

Intercropping also reduce N₂O emissions

Nitrification under Century-based Formulation

CLM4.5 Tech Notes Ch16

Rate of nitrification of NH₄⁺ to NO₃⁻ is

• A constant fraction of nitrification flux (6 x 10^{-4}) is assumed to be N₂O ("holes in a pipe" approach)

Denitrification under Century-based formulation

CLM4.5 Tech Notes Ch16

 Potential rate is co-limited by [NO₃-], consumption rates and only in anoxic soil (with dissolved oxygen depleted):

• Fraction of N₂:N₂O produced is given by $P_{N_2:N_2O} = \max\left(0.16k_1, k_1 \exp\left(-0.8P_{NO_3:CO_2}\right)\right) f_{WFPS}$ (16.14)

where $P_{NO3:CO2}$ is the ratio of CO₂ production in a given soil layer to the NO₃⁻

concentration, k_1 is a function of d_g , the gas diffusivity through the soil matrix:

$$k_1 = \max\left(1.7, 38.4 - 350 * d_g\right) \tag{16.15}$$

and f_{WFPS} is a function of the water filled pore space WFPS:

$$f_{WFPS} = \max(0.1, 0.015 \times WFPS - 0.32)$$
(16.16)

Denitrification under CLN-CN: NS_{sminn} -> N_{atmos} (single pool)

CLM4.5 Tech Notes Ch16

• For calculating fluxes of denitrification,

$$NF_{denit,SOM3 \to SOM4} = \begin{cases} 0 & \text{for } NF_{pot_min,SOM3 \to SOM4} > 0 \\ -NF_{pot_min,SOM3 \to SOM4} f_{denit} & \text{for } NF_{pot_min,SOM3 \to SOM4} \leq 0 \end{cases}$$

$$NF_{denit,SOM4} = -NF_{pot_min,SOM4}$$

 If mineral nitrogen is in excess,50% of the exceeded will be denitrified and discharged to the atmosphere as one species at each time step,

$$NF_{sminn,denit} = \begin{cases} \left(\frac{NS_{sminn}}{\Delta t}\right) - NF_{total_demand} f_{dnx} & \text{for } NF_{total_demand} \Delta t < NS_{sminn} \\ 0 & \text{for } NF_{total_demand} \Delta t \ge NS_{sminn} \end{cases} \qquad f_{dnx} = 0.5 \frac{\Delta t}{86400}$$