Modeling and assessing effectiveness of intercropping as a sustainable agricultural practice for food security and air pollution mitigation

Ka Ming FUNG (kamingfung@link.cuhk.edu.hk) Graduate Division of Earth and Atmospheric Sciences The Chinese University of Hong Kong

5th iLEAPS Science Conference 11th September 2017

FAO: to feed the fast growing population, we need to double our food supply by 2050

But, is the Earth ready for more agricultural activities? Foley et al. (2011)

Cropland Expansion

Agriculture is the cause of 80% of deforestation worldwide

Intensified Farming

70% of fresh water is used for crops and livestock

Over-fertilization makes $NH₃$ emission an air pollution problem

>90% of NH₃ in Europe & China are agricultural emissions and attributable to downwind $PM_{2.5}$

Gu et al. (2012)

Intercropping could be a way-out to this food-environment dilemma

Two or more crops are planted in alternate strips with a time-delay

Nitrogen fixing nodules

Such competition triggers and enhances soybean to convert more atmospheric N to soil nutrients

To investigate its beneficial effects, we simulate a large-scale intercropping in China

Adding intercropping into DeNitrification-DeComposition (DNDC) biogeochemical model

> Simulating a nationwide conversion of the maize and soybean monoculture farmlands to intercropping in China

> > Predicting downwind PM_{2.5} using GEOS-Chem 3-D global chemical transport model

> > > Performing a cost-and-benefit analysis of such conversion of farmlands

We enable intercropping in DNDC by adding a new nutrient allocation algorithm

DeNitrification-DeComposition (DNDC) Biogeochemical Model

Inputs: Climate, Crop Parameters, Farming Practices

Fraction of non-nodulated roots:

$$
f_{\text{uptake}} = \frac{N_{\text{uptake}}}{N_{\text{demand}}} = \frac{1}{\frac{N_{\text{demand}}}{N_{\text{uptake}}} = \frac{1}{\frac{N_{\text{uptake}} + N_{\text{fix}}}{N_{\text{uptake}}}}
$$

N Fixation Index

=

2. Assuming size of depletion zone is proportional to root mass, competition factor is defined as:

> $CF_{\text{crop}} =$ space occupied by crop space occupied by system

≈ $mass_{\rm root, crop} \cdot f_{\rm uptake, crop}$ \sum_{crop} mass_{root,crop} • $f_{\text{uptake,crop}}$

3. In each iteration, the amount of N a crop could get from a soil layer:

 $N_{\text{uptake, crop}} = \min(N_{\text{accessible, crop}}, N_{\text{demand, crop}})$ $= min(CF_{\text{crop}} \cdot N_{\text{soil}})$, $N_{\text{demand, crop}}$

Using input data of a field experiment, our simulation shows that

DNDC Simulation of Yong et al. (2014)

Simulated Yields in China

systems - inter.maize - inter.soybean - mono.maize - mono.soybear

On average, converting monoculture to intercropping in China could save 42% of fertilizer use while maintaining the maize production

Correspondingly, NH₃ emission could be reduced by 45% NH₃ Emission

3-D Global Chemical Transport Model

GEOS-Chem predicts improvements in air quality after converting farmlands to intercropping

IH_4^+ greatest change = -0.30 µg m⁻³ (-3.3%)

(% to local mean without intercropping)

Costs and benefits of converting monoculture to intercropping

Net Gain with Intercropping (Maize-Soybean)

40

 $(Sum = US$44,689 million)$

Revenue from Grain Yields

(Sum = US\$ 51,021 million)

100E

 -3000

45N-

 $35N -$

 $25N -$

 $80E$

US\$ million

 -6000

=

 -40

 $\mathbf{0}$

Saved Costs on Fertilizers

 $(Sum = US$ 610 million)$

Saved Production Costs (Machinery & Labour)

 $\mathbf{0}$

120E

3000

6000

Summary

Next: Intercropping and $NH₃$ emissions in the Community

Thank you!